为了快捷有效地验证和优化产品设计,我们通常会采用仿真模拟手段。先建立一个模型,用于拟合现实,为了验证产品的特性被准确、清晰地仿真模拟,通常会有一些来自真实的测量值用于对比。在更好的情况下,仿真模型显示出与测量结果具有相同的力学行为,但有时情况并非如此,或者模型本身存在一些无法测量的材料参数。
参数反演的简单理解:感兴趣的是组合参数A,但是参数A很难直接用仪器测量出来,参数A和性能B存在真实的物理关系,试验能够直接测量得出B,因此,通过测量的B,利用物理关系和模型,反推出A。
以初始动能激发的单自由度系统为例,已知一组时间位移测定值,需要校准模型系统,确定参数质量m、 刚度k、阻尼D和初始动能Ekin。
初始动能激发的单自由度系统:
自由振动运动方程:
无阻尼和阻尼特征频率:
时间位移函数:
模型初始参数:m=1kg、k=20N/m、D=0.02、Ekin=10Nm,初始值与试验参考值时间位移关系曲线对比图如下所示:
目标函数是使参考值和计算位移函数值之间的误差平方和最小:
利用全局边界对信号提取项进行敏感性分析,给定设计变量的设计空间,其输入参数变化范围如下:
optiSLang提供了高效的敏感性分析、参数识别算法,可以基于预测系数(COP)和预测元模型(MOP)自动识别重要性参数并对预测质量进行量化。模型信号差异error_norm响应面由于高度非线性行为,在当前样本点数量下CoP值为75%。
对error_norm影响更大的设计变量依次为刚度k(61%)、质量m(34%)和初始动能Ekin(18%), 设计变量D未显示对error_norm有影响。
选择 Simplex 算法进行快速局部搜索,通过连接程序自动选择敏感性分析中更佳设计点作为初始设计。其流程如图所示:
信号模拟曲线图如下所示,模拟曲线充分覆盖了参考曲线,说明给定的参数范围足够以进行校准,更优值红色曲线与参考值绿色曲线几乎重合,算法很好地收敛到较小的信号差异。
下表是系统参数初始值与反演值的对比,模型信号差异很大程度上得到缩减,参数反演分析使模型得到校准,仿真拟合曲线和参考曲线之间实现了出色的一致性。
模型校准和参数反演,将产品的特性被准确、清晰地仿真模拟,不再过保守设计,研发人员可以利用高置信度的虚拟样机,进行高效的结构优化设计,大大降低产品的成本和增强品质竞争力。
另外optiSLang可以集成到Workbench界面,直接读取Workbench中Mechanical的分析流程中的参数。上述案例用Workbench界面分析时的流程如下图所示。
利用optiSLang模型标定与参数反演功能,可以让我们的仿真模型更加准确,从而保证仿真结果更加精确。