首页 新闻资讯 RP系列 | 激光将在哪个波长发射?

RP系列 | 激光将在哪个波长发射?

阐述了在宽带增益介质中,是什么物理因素决定了激光的发射波长,以及如何利用数值模型最有效地计算出激光的发射波长。

阐述了在宽带增益介质中,是什么物理因素决定了激光的发射波长,以及如何利用数值模型最有效地计算出激光的发射波长。

虽然在某些情况下,激光发射的波长是很明显的,但在其他情况下,具有较大增益带宽或多条发射线的激光可能会发射不同的波长,这取决于具体情况。在此,将讨论两个问题:是什么因素在物理上确切地决定了激光波长,以及我们如何在数值模型中找到它?我们把讨论限制在连续波激光器;例如,对于q开关激光器,有些方面是不同的。

物理学

有时人们会说,激光器会在增益介质中产生更大增益的地方发出激光。这是不可能的,因为谐振器的损耗基本上与波长有关。因此,标准应该基于净增益,即增益减去损耗(均以分贝衡量)。这还不是全部的事实。对于准三能级增益介质(光纤激光器的正常情况),增益谱的形状取决于激发能级。那么对于什么激励水平,我们应该怎样计算增益?理解这一问题的一个好方法是想象泵浦的功率在激光开始之前是缓慢增加的。当某些波长的净增益超过0分贝时,就会发生这种情况。然后,激光波会迟早饱和增益,使净增益完全保持在0分贝,否则,激光功率将继续无限制地增长。这意味着激光激活离子的激发将在激光阈值处被“箝位”到其值,并且增益的光谱形状不再改变,即使对于准三能级增益介质。在某些情况下,这些都过于简单。例如,我们可能会有不均匀的增益饱和:其他波长的增益仍然会随着更强的泵浦而上升,因此激光也可能从那里开始。这会导致宽带发射或在不同的激光线上同时发射。顺便说一下,这种情况很难模拟,因为我们需要考虑不同种类的离子;主要的困难是获取所有的光谱数据。空间烧孔也可能导致一定程度的不均匀饱和。至少这不涉及关键数据,所以可以用一些专门的模型来处理它。然而,在这里,我们将自己限制在具有其次增益饱和的简单情况。

造型

因此,我们现在讨论如何计算激光波长的数值模型,例如用RP光纤功率软件。

一种方法是制作一个模型,包含许多不同波长的不同可能的雷射波。(在RP光纤功率中,这些被称为“光通道”。)软件应该能够计算出稳定状态,当这些通道中只有一个是真正的激光,而其他保持在阈值以下,因此不产生任何输出功率。然而,这种方法的缺点是,为了获得计算激光波长的高精度,需要使用具有相应波长间距的激光通道——这可能会导致所需的光学通道数量大得不切实际。另一个问题是,如果某些光通道具有非常相似的增益,算法可能会有一些数值问题。即使它能很好地收敛(通常RP光纤功率就能做到这一点),它也可能需要大量的数值迭代,而且由于有许多光通道,每个迭代都需要时间。因此,计算时间相对较长。

由于这些原因,对于激光波,使用只包含一个光通道的模型实际上是更好的,然后数值计算其波长。“正确”的激光波长的标准可以简单地说,它是激光发生在激光活性离子的最低激发水平。更准确地说,是沿光纤的激发能级的最低平均值。(注意,只有平均值与光纤的增益相关,因为沿光纤的模式尺寸是恒定的。)在RP光纤功率中,我们可以实现如下策略(以掺镱光纤激光器为例)。首先,我们定义了一个计算任意激光波长平均激发能级的函数:

n2_av(l):=

{在给定波长下发射激光的平均上层态激发}

开始

set_lambda(signal_fw,l);

set_R(signal_fw,1,R_f(l));

{设置与波长有关的谐振器损耗}

n_av(2); {第2级的平均激发,较高的激光级}

结尾

然后将该函数用于第二个函数,该函数计算正确的激光波长:

laser_wavelength():=

{自动计算激光波长,

即,激射导致最低的Yb激发的信号波长}

min(n2_av(l),l在[975 nm,1100 nm]中,xtol = 0.1 nm,除法= 20,扩展= 1)

然后,例如,每当有人更改了系统的某些参数(例如,光纤长度)时,便可以调用该函数。以下代码可用于绘制图,其中将激光波长和输出功率绘制为光纤长度的函数:

x:0.2、4

“纤维长度(米)”,@ x

y:0、0.7

y2:960、1100

框架

f:(set_L(x);laser_wavelength()/nm),

yscale = 2,颜色=蓝色,样式=虚线,宽度= 3,

“激光波长(nm,右标度)”

f:(set_L(x);laser_wavelength();P_out(pump)),

颜色=红色,宽度= 3,“残留泵”

f:(set_L(x);laser_wavelength();P_out(signal_fw)),

颜色=蓝色,宽度= 3,“输出”

对于每个x坐标,我们首先设置相应的光纤长度,然后调用用于计算激光波长的函数,然后(根据需要)调用输出功率。得到的结果如下图所示:

图1: 掺Y光纤激光器的光纤长度变化。光纤越长,发射波长越长。如果光纤变得相当长,荧光的功率损耗会变强,或者光纤太短而无法有效吸收泵浦辐射,则输出功率会下降。所采用的数值方法是相当有效的;上面的图表在普通的办公电脑上可以在20秒内生成。

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

作者: suifengmianlai

为您推荐

圆满落幕!望友精彩亮相2023工业软件生态大会

11月5日-6日,2023工业软件生态大会在深圳成功召开。

开目软件受邀出席2023工业软件生态大会,共探智造未来!

11月5日-6日,2023工业软件生态大会在深圳会展中心火热开展,作为中国高端工业软件领导品牌、行业领先的3D智能工艺软件提供商,开目软件受邀出席并发表主题演讲。

2023第四届中国FMEA峰会暨聪脉新品发布会圆满召开

2023 中国·深圳 第四届中国FMEA峰会 暨聪脉新品发布会 圆满召开 聚焦FMEA 11月1日,由聪脉(上海)信息技术有限公司(以下称聪脉)主办的中国第四届FMEA峰会暨聪脉新品发布会在深圳凯悦酒店圆满召开。

一周客户新闻速递

近期热点 NEWS 2023.11.6 客户新闻 聪脉知道 了解企业客户最新热点 关心企业客户最新资讯 企 业 客 户 新 闻 周 速 递 新闻速览 近期客户热点新闻 1 中国一汽研发总院成功举办中国汽车工程学会汽车非金属材料分会第十届年会 2 金溢科技助力西部首个智驾社区启用! 3 宝钢股份与中国港湾签署战略合作协议 4 4 3 4 日月光半导体推出整合设计生态系统IDE将封装设计效率提升且周期最高可缩短50% 5 广东亿迅2个创新产品入选国家级服务业数字化解决方案优秀案例 6 北方华创连续三年荣登中国电子百强企业榜单 7 广西康明斯发动机首次在柳工重型拖拉机上实现成功配套 聚焦汽车整车行业客户 中国一汽研发总院成功举办中国汽车工程学会汽车非金属材料分会第十届年会 11月2日,“中国汽车工程学会汽车非金属材料分会第十届年会”在湖北十堰隆重举行。

27地入选!住房城乡建设部开展工程建设项目全生命周期数字化管理改革试点

“ 为贯彻落实国务院关于工程建设项目审批制度改革部署,按照全国住房城乡建设工作会议关于“数字住建”工作部署要求,加快推进工程建设项目全生命周期数字化管理,近日,住房城乡建设部印发《关于开展工程建设项目全生命周期数字化管理改革试点工作的通知》,决定在天津等27个地区开展工程建设项目全生命周期数字化管理改革试点工作。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

返回顶部