首页 解决方案 采用Nelder-Mead Simplex算法约束排水体积的船型优化

采用Nelder-Mead Simplex算法约束排水体积的船型优化

在日常的船型优化项目中,通常需要对排水体积进行约束。

在日常的船型优化项目中,通常需要对排水体积进行约束。如需在保证总排水体积不变的前提下变化船型,CAESES软件中通过内置Nelder-Mead Simplex算法能够很好地实现这一目标。

下面以KCS船的优化为例,对所采用的优化方法进行介绍:

 

参数化变形

以KCS船为参数化变形的对象,在球鼻艏及艉封板采用Delta shift方法,在船体的入流段和去流段采用FFD方法进行变形。

1.png

 

设计变量

共选定七个设计变量,其中bulb_dx,bulb_dz,ffd_DY1以及DY1_factor四个变量用于控制船体前部变形,余下的三个变量ffd_DY2,DY2_factor和transom_p2_Z用于控制船体后部变形。

2_副本.jpg

 

排水体积的相关参数

参数Volume_new和Volume_old(52000m3)分别代表变形后的排水体积以及需要保持的目标排水体积,Volume_delta则代表两者差值的绝对值。

3_副本.jpg

 

优化设置

将优化分为两个部分执行,首先通过Sobol算法,对控制船体后部变形的设计变量进行修改,然后通过Nelder-Mead Simplex算法对控制船体前部变形的设计变量进行自动取值(以排水体积变化最小为目标寻优),以确保排水体积不变。

将Nelder-Mead Simplex算法,内置于Sobol的Design Pre功能栏中,并以SHIPFLOW软件计算得到的总阻力系数Ct最小为优化目标,Volume_delta≤10为约束条件,对KCS船型展开优化。

4_副本.jpg

 

结果列表

如下图,各设计方案中排水体积的变化均得到了很好的约束。

122.png

 

Nelder-Mead Simplex算法与Brent算法对比:

1.两种算法均可以与sobol“搭档”在满足排水体积不变的前提下进行船型优化

2.Brent算法只可以设置一个“自适应”变量。如果船体变形比较明显的话,Brent中的变量有时会需要产生较明显的数值变化,从而满足排水体积不变。这样可能会导致船体局部几何的不合理。

3.Nelder-Mead Simplex算法可以设置多个“自适应”变量,可以很好解决上述问题。

 

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

作者: suifengmianlai

为您推荐

生产制造 | 数控仿真保证“安全” 之 NCSIMUL四轴机床搭建

NCSIMUL 通过上一期对三轴机床搭建的讲解和演示,想必大家已经能够搭建自己专属的三轴机床。

质量管理 | 海克斯康 Q-DAS®与SAP QM的交互应用方案

SAP(System Applications and Product) 软件在企业的部署着眼于中央业务流程的优化。

新能源汽车供应链强力转型,数字化供应链系统订单管理数字化助力企业降本增效

当前,全球新能源汽车产业发展驶入快车道,新产品新技术加快研发运用,技术创新带动产业持续升级。

进度猫甘特图:项目管理中的任务分解工具

项目管理中是将大的项目目标划分为各个小阶段任务,WBS就是化繁为简,将负责非项目拆分为简单的任务,它可让事情依照一定规则或关系,通过一层一层来分解,这样要做的任务可以变为小目标。

查看流程审批历史记录解决方案

作者:黄鹏 审校:李达 适用版本:TC11 用户可以在TC中看到整个流程的历史记录,包括驳回,审批,编制的操作,这样可以方便我们查看哪些人参与了这个流程。

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

返回顶部